Serial Number System Challenge


I stumbled across an interesting link that made me think about a solid serial number system based on strong cryptography. Cryptography discourages systems based on secret algorithms, and relies on open algorithms and secret keys. So let us develop a serial number generation/verification system with the same usability as the one in the linked article but without any secret algorithms.

First, our serial numbers should have the form


where X – an uppercase english letter A..Z; to prevent user’s confusion let us exclude the letter O which looks like zero, so in the end we have 25 possible letters in 20 positions, that is BigInteger.Pow(25, 20) = $1D6329F1C35CA4BFABB9F561 combinations. Next, we want to work with full bytes; this reduces the possible serial keys to 11 byte-long numbers; also we want to use 2 bytes of serial key as a key checksum; this leaves us with 9 bytes, and we have 9*8 = 72-bit serial keys. That should be strong enough against full keyspace search attack on our system.

Suppose you are a micro-ISV and expecting to sell up to 100 copies of you software; then you need to generate 100 72-bit keys and embed their hashes into the executable (if it will turn out later that you need more copies it is not a problem – just recompile your executable with more keys next time; the same way you can revoke leaked keys – by not including them in the next release).

To derive 72-bit keys I use 128-bit master key and AES encryption algorithm as a pseudorandom function. Note that the 128-bit master key is actually the only secret in the system, everything else is calculated. It is worthwhile to generate the master key, for example, by tossing a coin 128 times.

For hashing I use SHA256 hash function. I also use CRC16 algorithm to calculate the key checksums.

The verification is 2-phase process. First, it converts a serial number in 20-letter format entered by user into a 11-byte serial key, calculates the checksum of the first 9 bytes and compares it with the last 2 bytes (this prevents user from mistyping his serial number). Second, it hashes the 9-byte key and checks that the hash exists in the keyhash table.

And now the challenge. The last TForge release (0.74) includes full source code of console application with the serial number system described above, in the Demos\Challenge subfolder. The key generation code is also included, though it is not used in the application and could be kept secret; the only thing I keep secret is 128-bit master key used.

Build the application with Delphi or Lazarus/Free Pascal.

One of the valid serial numbers is:


Try to find other valid serial number(s).